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SUMMARY

Recent advances in electronics technology along with the advent of low cost

multi-channel Fast Fourier analyzers have now made it practical to use higher

order central difference formulae to measure power flow in one dimensional and

twodlmensional structures, The method discussed in this paper uses five point

diffarencin 8 for the spatial derivctlves zn one dlmenslonand a thirteen point

difference pattern for the spatial derivatives in two dimensiona] plates and

shells. It is assumed that the measuring transducers areaccelerometers.

An analytical study of the higher order differencing method and the conven-

tional two accelerometer method was p_rfermed here as a preliminary to the appli-

catlonof thesem_thodstoactualaircraft structures. Some classical problems

were analyzed in order to simulate and compare the performance of the two methods

under near field measurement condition_. Near field condition_analyzed in this

study include examples of power flows near simple sources and simple boundaries.

The estimates produced by the two methods were compared to the exact solutioD in

each example, rh_s paper presents the theory and selected results of the study.

The results indicate that the bias errors of the two accelerometermethodunder

near field measurement conditions may be much lar_er than previous studles have

suggested

IN'I'I(() D( r(?TI()N

The successful reallzatlon of a dlagnosticmeasurement device for measuxing

power flow wouldgreatly alddeslgn engineers In their efforts to reduce the air-

craft interior nolse and vlbrat*onof both flxedwlngand rotarywin_ aircraft.



Forexample,accurate power flow measurements would allow designers to deter-

mine the critical paths of the vibrational energy transmission through the var-

ious structural members, verify computer predictions produced by sophisticated

analytical models, and determine the relative level of effectiveness of various

treatment methods used in reducing the vibrational pover transmission in a struc-

ture.

In order for a power flow measurement method to be utilized to its fullest

potential on aircraft structures it must meet the following operational require-

merits:

(I) The method must be accurate when measuring in evanescent or reverberant flow

fields.

(2) The method must be applicable to a variety of aircraft s_ructures with

different materialpropertiesand aspect ratios.

(3) The method must be applicable over a wlde range of frequencies.

Nearly all of the research performed in the past fifteen years on experlmen-

tel measurement methods for measurlng power flow in structures has foou3ed on the

two accelerometer method I '_In order to clrcumvent the difficulties of keeping

track of the multipllclty of t_rms required to measure power flow, the t_o ac-

celerometer method utilizes several simplifyin 6 assumptions, sometimes called

Nolseux's assumptions I' which are based on the premise that the shear wave compo-

nent and the bendlng wave component are equal under "free field" measurement con-

dltLons (A "free field" contains no power sources or boundaries in the vicinity

of the transducers)

As e result of the use of these assumptions, it was known at the outset that

the dataobtaznedby Nolseur'smethodwouldbe Inaccurate near power sources

or boundarLes end that only anest_mateof the total power flowwlthno shear-

bendlnK-twist component breakdown would be posslble. The method has remained
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popular, however, since it requires only two transducers for measurements in a

one dimenional etruct%tre (four transducer, for a two dimensional structure) and

only a dual channel Fast Fourier analyzer to perform the spectral analysis of

the data, Lar_elyduetothe simplicity of the measurement system, this method

appears to have become widely accepted for measuring power flow in simp]e beams

and plates. The two principal difficulties with the method have been identified

by researchers as inaccuracies while measuring under near-field conditzons 4,6,

and si6nal-to-noiee problems associated with hishly reveberant measurement

conditions. 4.5

Recent advances in electronlce tecbnolo6y alon 8 with the advent of low cost

multi-ch_u--_el Fast Fourier _nalyzers have now made it possible to use more so-

phisticated methods to measure power floe in one dimensional and two dl_ensional

structures Extremely low .elght (0.3 6ram) miniature piezoelectri: accelerom-

eters can now be used in con]uction wlth a multi-charulel Fast Fourier analyzer

to perform power flow measurements. The methodFroposedin thispaper (based in

part on Pavic's earller cork z) performs . direct finite difference approx_ma-

tlon of the spatial derivatives by utilizing u 13 accelerometer computational

molecule for the two dlmensional problem (5 accelerometers for the one dimen-

sional problem)• The primary advantage of this method is that its results remain

accurate near power sources and boundaries and it provides a shear-bendix-twist

component breakdown of the total power flow (With the large number of power

sources and the hundreds of structural junctures aund boundaries in am alrcraft.

those improvements ar_ belleved to be essentlal)

AL_ a flrst step In applyln_ this new method to aircraft structures,

analytical study of the new method and the older two accelerometer method was

performed in order to simulate and compare the performance of the two methods

undernear field measurement conditions. Measurement condrt_onsanalyzedin



this study include simulated measurements near line forces, line moments, point

forces, point moments, lateral quadrupoles, end near boundaries which possess

various combinations of mass. translational stlffness, mass moment of inertia,

and rotational stiffness properties. The predicted results of the twomethods

•ere compared to the exact solution in each case. This paper outlines the theory

utilized in this study and presents the computed results for the simulated near

field measurement cO_dltlons
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SYMBOLS

amplitude vector of a right traveling wave at posztion ._. 0

amplitude recto, of a left traveling wave at position.,- : ()

amplitude vector of a right travehng wave at posltion j.

amplitude vector of a left traveling _ave at position r

bending stiffness of the plate glven by the expression F/!%/! 12{ { F2Jl

'_,arbitrary amplitude coefficients used in the general solution of the

('!
govsrnlng equation

reflectzonmatrzxcoefficzent used to represent the translational

stzffnessend _nsrtza

',, refleotlonmatrlx coefficient used to represent the rotational stiffness

and Inert la

base of the natural logarlthms

/" Young' s modulus (modulus of elastzczty)

I frequency

[[ propagatzonmatrlx for s rzght travelzng wave

F/i { propagatlonmatrlx for a left travehngwave

I'i. amplltude (source strength) of a polnt force Input

(,'.... auto spectrumof a¢c_isratlonsignnl,_ (,, = I, 2, 3 13)

(/,,_ cross spectrumof acceleratlon slgnals ,, and .4 (,_.._ = I 2, 3 .. 13)
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plate thlckness

0th order Hankel function of the first kind

Oth order Hankel function of the second kind

Ist order Hankel function of the second kind

2nd order Hankal function of the second k_nd

area moment of inertla about the neutral axis

identity matrix

imaginary part of the quantity inside the braces

square root of -1

weven_bar

translation_l stiffness of the boundary

rotational stiffness of the boundary

dimensionless translatlonal stiffness

dimensionless rotational stlf±ness

mass per unlZ wldth for abeam, mass per unit area for aplate.

mass per unlt length of the boundary

rotational _nert la per unlt length of the boundary

banding moment per unlt length in the dlrection Of wave propa_ation

bendln_moment per unlt len_thperpendicular to the direction of

wave propagatlon

amplltude (source strength) of apolnt moment input

twlstln_moment per unlt length in the plate

load]n_ functlon

amplltudo of the loadln_ functlon

shear per unlt length in the plate

amplitude (source _ tren_th_ of a quadrapole input

radial dlst_nce from the source



Irl reflection matrix

N,{} real part of the quantity inside the braces

l time

,r cartesian coordinate

!I cartesian coordinate

.,., real power parfait length flowing in the x dlraction

,,,_ real power per unit length flowing in the y direction

,,'.,i. bendin KcomPonent of the real intensity inx direction

_t.. shear component of the real intenslty in x direction

.,., twist component of the real intensity In x direction

_,'_h bendln_ component o_ the real intensity in y direction

"'v, shear component of the real mntensity in y directzon

.,., twist component of the real intensity in y direction

/! denotes partialdifferentiatton

_I) Dirac delta function

transducer (flnlte difference) spacin_

'I transverse dlsplacement of the beam or plate

'l, transverse displacement at locatlon i on the on the beam

or plate (l - I, 2, % .... 13)

V b solution to themodlfled Bessel'_ equation

V solutzon to Bessel's equatlon

R;, slope in the dlrectlonof wave propagation

H, angle of twlst

ft Polsson's ratlo

_,, translational dampln_ ratlo for the boundary

<,_ rotational dampln_ ratlo for the boundary

rst_o of clrcumference to the dlameter of a circle



I[_ time avera6ed complex intensity in hhe x direction

,_ azimuthal angle

radiandriving frequency

_2 Laplacianoperator

_4 Biharmonicoperator

,_ denotes a time average

_ approximately equal to

differentlationwith respect to time

twicedifferentiationwithrespect to time

REVIEW OFTHEFREEFIELDMETHOD

The tlme averaged intensity (power flow per unit length) of transverse waves

flowing in the .rdirection through a two d_mensional structure is given by the

equation

11= (2il , , - _Ifh_h-_ + . 31th, "t.

where the individual terms in equation (I) are gzven by

(I)

_ '_ ('2)
,H '

,t,l (2)

_i ,i-'ii ,IJ,l (5/
(? /i

}z' r I- ¢_1 2 '
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Noiseuxl has shown that equation (I) can be simplified considerably when the

power flow takespla_eunder free field conditions. In reference I, it is shown

that if there are no power sources or discontinuities in the properties of the

media (boundaries) nearby, then the followlng relationship holds:

I I p)

Further, it is shown in reference 1 that the approximationsiven by equation

(8) can be easily obtained from measurable quantities under free field measure-

ments conditions from the following relation:

- tl_''.rl _: Ht,'w.{ (1 j,)

Substituting the approximatioILof equation (9) into equation (l) the re-

sulting equation for the total power flow is

(9)

ll_ Q') "' ' /_'2 ' '/4_, ", (10)

S*nce the total power flou is shared equally by the shear and bending com-

ponents under free fleld conditlons, equation (i0) can be reduced further to the

following slmple result:

II. 21_/,-' Ii#_ "' • Ill

Equation (t t) has been use_1 by a number of researchers to obtain an estimate

of the power flowing in simple beam and plate structures I '; The most popular
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experimental implementationof equation (11) utilizes two accelerc_metereand the

following finite difference approximations:

Ob _ [i_, 112]/A.

Substituting equations (12) and (13) into equation (11) _he result is

12)

13)

Ilk 2

il_ 3 • I_" _ll'll 't + < U2_)I .>t < ,II_2 >, < 'n_z) >t]. (i4)

Expressing equation (14) in terms of acceleration rather than displacementand

velocity, converting %o %he frequency domain and taking the real part of the

result, the equatxon for intensity is

__:i_

II'j 17_" • lm{!(,n, (;,, (,'._l (15)I ' .. + (h2'!}- 2HA" ,,_, ,
(-+ '_ _ i,+,+_++ ) I m it-,zn r,

andeincek4 ,_,-'m /_ theresult can be written as

p

'.!_ Lh_l)' " h,,{(:,.,} (16)
"'_ (.2X)

Thus, squat ton (16) can be used as an estimate of the power flowing in a beam

or plate using the two-accelorometermethod

THE DIliECT FINITE DIFFERENCE APPROACH

An alterna£e approach to the problem of neasuringpower flow in structures

ls to perform dlrect firttedifference approxlmations of equatlone (2) through

(7) by using amore sophisticatsdcomputationalmolecule, Conslder the ¢ompu-

tatlonalmolecule shown in_Igure i. This computatlonalmoleculeconsistsof

an array of 13measurement transducers (accelerometers) arranged in a symmetrlc

9



fashion onatwodimensionalsurface (e.g. aplate). If each transducer in the

molecule consists of a 0.3 gram accelerometer, the combined mass load on the sur-

face of the strueture amountsto 3.9 grams. (Themmss loadper_unit areawill de-

pend on thetranducer spacing.) Other computational moleculeswithfewertrans-

ducers (e. 8. I0 transducers z) can beused inthe finite difference approach. The

13 transducer molecule, however, was chosen for study since it provides estimates

of the power flow in the _'_ad y directions at the same location in a 2 dimensional

structure.

Utilizing the computational molecule of fiEure i, the following central

difference approximations can be made:

,/ :: (17)
"; /H ,'Hq7 .

RI_ ;J ')l !/11: (IN)
,t7 'il :: (2A)

i,

,'; /_

(_ ;['-I1 7__. _ Ill i t/, I,l't . ILl I/in _ bil I I112 lll_; l . (20/

"_ !'/ ,+2 / 1/

.'ll,_ 1_' ,'t,-' ' It,t,/-' ": ,_k_,[(r,H 2'17 ' Y!I) i tt(lla 2,/7 t q*ll, (2}

,_e,j I¢
,11, 11(I Y)i 'l-' 'j; + V,,I o,el. (1_2)

Y ),'l ,.,_ I_: I

These central difference approximatlons may be rewritten in terms of ac-

celerations instead of dlsp]acements and substituted into the appropriate terms

lntoequation (I) Convertlngthis former equation (I) tothe frequencydomain

I0



end taking the real part of the result, it can be shown that the shear, bending,

and twist components of the power flow ere given respectively by

B
4"; ' ' .

"'_.' 2A3_,_ $ [Int{GI7 + (;27 - 37 _ (,47 - (;107 + 4(;I17 - ('127 - G137}],(23)

s [1'"{((;33 2G7_ t ("H3 (;_11 + 2GTn - Gnu)

}P((g6% "- 2(;'7:1 4 (/s:t G6II + 2_"711 " GSII)}]

,,',,-w H (_I_ p[ • ;m{(;2s (;46- (/1o6= (:1_e- (;zs+ C:4s_ Glee - Gns},

Recalling the follo,ing properties of cross spectra

(24)

(25)

1_{(,,_,_} O, (26)

1,,,{_;o.} I,,,{C_O}, (27)

it is seen that equations (23) through (25) require a total of 21 independent

cross channel measurement pairs in order to compute estimates of the real part of

the shear, bending, and twist components of the power flow. Thus. the experimen-

tal imp!ementation of the computational molecule of figure I requires at least 2

passes ,ith most 18 channel FFT analyzers, or 3 passes with most 8 channel FFTan-

elyzers.

Finite difference approximations for the shear, banding, and twist compo-

nents of the power flow in thsqdirection car*be obtained in a similar fashion.

The results of the derivations are given hy the equations

I¢

"b. :_ 2Aiw i • F!,,,{ ¢"=? _ (:.t7 _;_7 _ .1(/,_; 4(;_7 - ('q7 (/107 * (_'127}] , (2s)

11
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Wvb_ 2A3_ 3 e[lm{(t;ss 2(':s _ t'ss (;ss +2(;7s - Gs6) (29)

It((;_s 2(,'7s (;1Is (,':_ _ 2(,'7f_ _;lls)}]

I_ (I I')
.'_t:= (SA_) .Ira{ (,'2t _ (;4_ ¢ f,'l_/_ (;l_:_ _ _;_l (;411 (:m_t ¢ (,'1211}, (30)

Equations (28) through (30) indicate that 13 additional independent cross

channel measurement pairs are required tu obtain the components of the real power

flow inthe y direction. Thus, the implementation of the computational molecule

of figure 1 r_quirss a total of 34 independent cross spectral measurements to

obtain the six components of power flow iP s r and 9 dirsctxons. In practice.

this would require 3 passes with most 12 or 16 channel FFT analyzers, or 5 passes

wlth most 8 channel analyzers.

It should also be noted that if the _,ometrical characteristics of the

structure under investlgatlon are [ dimenslonal, the direct finite differenc_

approach simplifys considezabl_ For example, if the stI octure is a simple beam,

the equation for the power flow is given by

(31)

For _he case of the I dimensional structurs, the central finite difference

approximations for,) end for _, remeln the same (see equations (17) and (18)). The

formulae for the shear andbondin_moment simplify to the expressions

() I,I Lr_ I"1 ('2._")

,_:r/ _; 2_17 _ 'lit (33)
._1_, I'.'1.1,. : I"1'" A'
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Thus, it is seen that only 5 of the 13 transducers are required in this case.

Further analysis shows that the equations for the real parts of the _hearand

bendin_ components of the power flow are given by

El

El

Equations (34) and (35) indicate that only 5 independent cross spectral

measurements must he performed in order to obtain estim_.tes of the real part of

theshearandbendlngcomponentsof the power Slow inabeam. This requiresa

slngle pass with most multichannel FFTanaly_.rs.

SIMULATED MEASUREMENTS

A series of analytical simulations of the two accelerometerand the direct

flnite difference measurement methods were performed in order to quantifyand

compare the accuracy of the two methods undernear field measurement conditions.

[n the subsections that follow, selected results of the computer simulations

of the two methods are presented for the cases of measurements in a plate near

to a line force, a ilne moment, a polnt force, a polnt moment, and a quadrupole.

Secondly, selected results are presented for slmulatedmeasurementsnear to

boundarles which possess varlous comblnations of mass, translational stiffness.

rotatlonal Inertla, and rotatlonal stlffness properties. (The geometrloal

arrangement of the znput forclng function, the transducers, and the boundary

are shown in fl_ire 2 ) A 0 32 cm thick AA2024 alumlnumplate was chosen as the

test vehicle for the slmulations since it zs representative of thematerialsand

structural aspect ratlos used in alrcraft constructlon. The material properties

of the plate are presented In Table [

13



Each data figure presented in the subsectlons that follow consists of parts

(a) and (b). Part (a) shows the relative error of the two measurement methods in

dB (relative to the known exact solution) over the O - 1000 Hz frequency range.

Part (b) shows the intensity of the power flow IndB (relative to I Watt/meter)

as eat Imated by the two measurement methods for a forcing f_u_ction whlch has a

uniform input over theO - IOOOHz frequency range. In each case, the two figures

viewed together provide some insights into the sxgnificance of the error. The

results produced by the two accelerometer method are denoted by the words FREE

FIELD and the results produced by the direct finit e difference approach are

denoted by the word DIRECT in both the figure legends and In the discussions that

follow. The O - IOOO Hz frequencyrs_nge was chosen for the analysis since It Is of

prlmary importance In propeller drlvenalrcraft.

lhe exact solutlonfor the structural intensity flowlng in the plate for

each flow field under examination was obta±ned in the followlngmaunner: The ex-

a_t solutlons for the transverse dlsplacement, transverse velocity, an_ular vs-

loclty, rate of twlSt, shear, bendlngmoment, and twlst]n_moment as a functionof

posltlon on the plate were derived (Summaries of these analytical d_rlvations

are presented in Appendlces [ throush III.) The results of these _erlvations were

Ancorporeted _n the computer codes and were used In conj_nctlon wAth equation (1)

to calculate the exact amounts of structural intenslty flowlng in shear, bendlng,

and twlst at an_ l,)catlon In the plate

The two measurement methods were s_mulated f< r each flow fleld under lnves-

tl_atlon as follows The analytical result for the t-ansverse dlsplacement as a

functlonof posltlon on plat_ was ut111zed to compute the acceleration that would

be exp_rlen _dby each indlvldual accelelometer _n the transducer array. (The

computed transverse dlsplacement was mu[tlplledby 2 In the frequency domain

to obtaln the accsl_ratlon in each cas_ ) The c.}mputeda¢celeretlons were then

14



Each data figure presented in the subsections that follow consists of part s

(a) and (b). Part (a) shows the relative error of the two measurement methods in

dB (relative to the known exact solution) over tho 0 - I000 Hz frequency renew.

Part (b) shows the intensity of the power flow in dB [relatlveto 1 Watt�meter)

as estlmat ed by the two measurement methods for a forcing function which has a

uniform input over theO - lO00Hz frequency ran6e. In each case, the two figures

viewed tosether provide some insights into the signiflcance of the error. The

results produced by the two accelerometer method are denoted by the words FREE

FIELD and the results produced by the direct flnite difference approach are

denoted by the word DIRECT in both the figure legends nnd In the discussions that

follow. The 0 - 1000 Hz frequency range was chosen for the analysis since it is of

prlmary importance in propeller drlven aircraft

The exact solution for the structural intensity flowln_ in the plate for

each flow fleldunder examination was obtained Inthe followlngmanner: The ex-

act solutlons for the transverse dlsplacement, transverse velocity, angular ve-

loclty, rate of twlst, shear, bendlngmoment, and twlstlngmoment as a function of

p_s[tlon on the p|ate were dei1ved. (Summarl_s of these analytical derlvations

are presented in Appendlces [ through Ill ) The results of these dsrlvations were

incorporated in the computer codes and were used in con]unctzonwith equation (I)

to calculate the exact amounts of structural intenslty flowing in shear, bending,

and twist at any locatlon in the plate

The two m_asurement methods were slmulated for each flow f_eldunder Inves-

tlgatlon as follows ?he analytlcal result for the transverse displacement as a

functlon of posltlon on plate was ut111zed to compute the acceleration that would

be experlenced by each ind;vldual accel.lom_ter in the transducer array (The

computed transverse dlsptacement was multlplled by _: In the frequency domaln

to obtain the acceleratlon in each :ass ) The computed acosleratlons were then
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substituted into the finite difference approximations utilized by each measure-

ment method. Thus. a4transducercomputationalmoleculewasusedinconjunction

with equations (12) and (13) to simulate the two accelerometer method .bile a 13

transducer computational molecule was used in conjunct-ion with equations (18)

through (23) to simulate the direct finite difference approach.

A 2 cm transducer spacing was selected for the two acceleromster method

_hile a 1 cm t_nsducer spacing was selected for the direct finite difference ap-

proach. It is acknowledged at the outset that these choices provide the direct

approach with a shght advantage over the two accelerometer approach in the high

frequency ranges (beyond the scope of analysis of this paper) where finite dif-

ference error zs important. In the low frequency ranges where near field error

is important, however, the larger transducer spacing for the two accelerometer

probe should, if anythlng, provide it with a slight advantage over the direct ap-

proach

MEASUREMENTS NEAI{ A LINE FORCE

Flgures 3 and 4 show typical results obtalned for simulated measurements

In a plate near to a line force input. A summary of the analysis used to generate

these results Is given In Appendix I. The amplitude of the line force disturbance

was fixed at 10.O N/m

For the case sho.n in flgure 3. the geometrlc center of each measurement

probe is located at a dlstance of 10 cm from the line force discontinuity (31.5

tlmes the thlckness of the plate). Figure 3(a) Indicates that the near field er-

ror for the FREE FIELD method is less than I dB everywhere except in the frequency

range below 50 Hz The near field error of the DIRECT method Is seen to he negli-

glb[e in ail frequency ranges Figure 3(b) adds addltlonal lnslght Into figure

3(a) since it indlcetes that the frequency range In whlch the FREE FIELD method

oxperlences the largest errors coincides wlth the frequency rangeofmaximum

15



power flow for a uniforminput force. Thus, the error in the estimates produced

by the FREE FIELD methodc_ibe significant in some cases. (Note: References 4,

5, and 6 present results similar to those sho.n in figure 3(a) for the case of a

line force input, but do not include the accompanying plot of the intensity of the

power flow.)

Figure 4 shows the results obtained when the measurement probes are located

5 cm from the line force discontinuity (15.75 times the plate thickness). These

results indicate that the magnltude of the error in the intensity estimates

produced by the FREE FIELD method increases in the lower frequency ranges. The

estimates produced by the DIRECT method remains very accurate, however. Also,

from comparison of figures 3and %, it can be seen that the errors produced by

the free field approximations will change sign in some frequency ranges when

the probe is moved closer to the input. Thus, the FREE FIELD method may elther

overestlmeteor underestimate the true intensltydependin_ on the location of the

medsurement probe.

MEASUREMENTS NEAR A LINE MOMENT

Figure 5 shows typical results obtelne/for simulated measurements in a

pletenear to s ]inemoment input The analysis used to generate these results is

summarlzed in Appendlx I. Thea mplltudeof the line moment disturbance was fixed

at 0.20 Nm/m. For the case shown in figure 5, each measurement probe is located 10

cm from the llne moment dlscontlnulty In thls case. the near fleld error in the

estlmates produced by the FREE FIELD method is seen to be consistently negative

(the true intenslty is underestlmated) and the errors are larger inmagnltude

than those experlencedwhenmeasurlngnear a llne force (see figure4). The

**ear fleld error of the estimates produced by the DIRECT method in figure 5 is

negligible by comparison. These results are in sharp contrast to the results of

f*gures 3 and 4 where the error curve produced by the FREE FIELD method "hovers"

16



about the axis of Oerror, In fairness to the FREE FIELD approach, however.

it should be noted that the frequency range in which large error occurs in its

estimates coincides with the frequency range of minimum power flow for a uniform

line moment input.

MEASUREMENTS NEAR A POINT FORCE

The two methods of power flow measurement were also simulated for the case of

measurement near a uniform point force input to aninfiniteplate. The magnitude

of the point driving force input was fixedat lO.O N. Qualitatively, the results

obtalnedfor these simulations were very sxmilar to those obtained for a line

force input (See figures 3 andd.). This is to be expected since the solutions to

thle type of flow field (summarized in Appendix If) must obey the radial symmetry

of the problem. Therefore. the results obtelned should exhlblt slmilar one

dimensional type behavior.

The simulations for the polnt force did produce one notable addition to

the prevlous body of knowlege, however b'or the case shown in flgure6, each

measurement probe ls located 5 cm from the polnt forcedlscontinuity. In figure

6(m), the error curve for the FREE FIELD method does not cross the axis of 0

error, but underqstxmatos the true intensity over the entire frequency ra/a_eof

Interest (In other cases where the measurement probes are 10 cmor further from

the source, the error curve of the FRZE FIELD method crosses the 0 error axis.)

Thus, unlxke the results obta,ned for the line force, the error curve of the FREE

FIELD metho,|does not necessatlly"hover"about the axls of 0 error. Since the

amount ef power input tu the plate is _nlform over the entire freouency ran6e in

thls case (see f_gure g(b)), the !ar_e near fleld error introduced by the FREE

_IELD method at low frequency could slgnlflcantly de_rade the accuracy of the

estimate of the total power flow Also nots that the near fleld error experienced
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by the DIRECTmethod of measurement is once again insignlficant in comparison to

that experienced by the FREE FIELD method.

I

MEASUREMENTS NEAR A POINT MOMENT

Figures 7 end 8 show typical result s obtained (using the analysis summarized

in Appendix II) for simulated measurements in aplatenear to a point moment

input. Ths amplitudeof the point moment was fixed at 0.20Nm. Unlike the results

presented for the previous cases, the flow field in this case possesses a strong

directional character.

For example figure 7 shows the results of the simulations when each mea-

surement probe is located 10 cm from the point moment and aligned along the dipole

axle (_, O degrees) (The flew field of a point moment can be mathematlcally

represented as a force couple or dipole.) In this case, the near field error in

the estimates produced by the FREE FIELD method is consistently negative, but is

unacceptably large only at frequencies below 200 Hz. The DIRECT method is seen to

produce very accurate estimates by comparison

As the measurement probes are moved either radially inward (closer to the

source), or moved circumfersntially in the azimuthal angle o, the performance

of the FREE FIELD method Is serlously degraded. For example, figure B shows the

results of the slmulatlons when each measurement probe is located at anazimu=hal

angle ,> of 80 degrees The measurement probes are agaln dlrected at the point

moment source and located st a distance of I0 cm away. Thus, the results of figure

8 are for the measurement of Intenslty along an axls that _s almost in pure tWlst.

These results indlcate that the estimates produced by the FREE FIELD method along

th*s ax_s are so Inaccurmte that no useful information can be obtained from them

In contrast, the estlmates produced 5y the DIRECT method remaln accurate across

th_ entlrsO-1000 Hz frequency range

18
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MEASUREMENTS NEAR A QUADRUPOLE SOURCE

Figures 9and 10 show typical result s obtained (using the analysis summa-

rized in Appendix II) for simulated measurements in a plate near to a lateral

quadrupole input The amplitude of the quadrupole was fixed at O. 02 Nm _. The

case of the lateral quadrupole is of interest since its flow field closely resem

bles that of a point force input located near the corner of a semi-infinite plate

.hich is simply supported along it s two edges.

Figure 9 shows the results of the simulations when each of the measurement

probes is directed at thequadrupole sourcelccated i0 cmaway. In this case. the

azimuthal angle © was flxed a% 45 degrees. This should be thebes% case scenario

for FREE FIELD measurement accuracy since the axis along _he %5 degree azimuth

is the axis of minlmumtwlst. The near field error In t_e estimates produced by

the FREE FIELD method is conslstently negative and signlficant at frequencies

below 300Hz. The DIR_CTmethod is seen to produce very accurate estimatesover

the entire frequency range.

Once again, as the measurement probes are moved either radially inward, or

moved circumferentially, the performance of the FREE FIELD method is seriously

degraded. Figure 10 shows the results of the simulatlonswheneachof themea-

surement probes Is located at an azimuthal angle oof i0 degrees. The probes are

agaln directed at the quadrupole source and located at a distance of i0 cm away-

The estimates produced hy the FREE FIELD method along thls axis are grossly inac-

curate The estimates produced by the DIRECT method, however, remain accurate

across the entlro frequency range

MEA%I_REMENTS NEAI1 A LINE BOITNDARY

WITH MASS AN[) TRANSLATIONAL STIFFNESS

Figures II and 12 shoe typlcal results obtaxned fzom the simulations for

measutements in a plate near to a hne boundary which possesses e translational

19



stiffness_.,i of ].0. IO 7 N/m/m, amass.l,1 of |.Okg/m, anda viscous critical damp-

i_ ratio_,_of 0 0[. A summary of the analysisusedtogeneratetheresults is

given in Appendix III. The analysis utilizes a uniformline force input of 10.0

N/m amplitude located I m away from the boundary to generate incident travel-

in 6waves on the boundary (see figure 2). The numerical values chosen to char-

acterize the boundary and the input forcing function are somewhat arbitrary but

representative of typical values that might be encountered in existing aircraft

type structures. The large distance between the source and the boundary insures

that the boundary does not experience any near field effects associated with the

source. Thus, the boundar_,"sees" only incident propagating waves.

For the case shown in figure 11, the measurement probes are located lO cm

away from the boundary Figure l[(a) ind!cates that the near field error for

the FREE FIELD method IS less than I d8 everywhere except in the frequency range

below 300 Hz. The DIRECT method is seen to be accurate over the entire frequency

range Figure |l(b) indicates that the frequency ranges of largest error and

maximum power flow coinclde for the FREE FIELD method Thus, the error in the

estimates produced by the FREE FIELD method can be signlficant. ALso note that

very llttle power flows through the boundary in the vicinity of 300 Hz. This

phenomenon IS caused by the strong Impedancemlsmatch effects of the boundary

at thls frequency It can be shown that the exact locatlon (in frequency) of the

*mpedancemlsmatch Is dependent primarily on the value of the stiffness of the

br,undary _,, _

FlgtJre 12 sh,>ws the results obtained when t *e measurement probes are located

cm from th. boundary Figure 12(a) Indicates that the magnitude of the error in

the Intensity estimates produced by the FREE FIELD method Increases as the trans

ducats aremov.d closer to the boundary The estimates produced by the DIRECT

2o
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method remain very accurate, however. Figure 12(b) is plot of the absolute val-

ues of the intensity estimates for thetnomethods. It is important to note that

the FREE FIELD method produces negative intensity values in the 175 2T5 Hz fre-

quency range. Thus, the FREE FIELD method indicates that the power is flowing out

of the boundary rather than through the boundary in this frequency range.

MEASUREMENTS NEAR A LINE BOUNDARY WITH

ROTATIONAL STIFFNESS AND INERTIA

Figures 13 and 14 show typical results obtained (usin_ the analysis o_

Appendix III) from the simulations of measurements in a plate _tear to a line

boundary ehlchpossesses a rotational stiffness _.@of [.0- [0 _ N-m/m, arotational

mass moment of Inert la ,p_,;of IPJ)I)ikg-mZ/m, and a viscous critical damping ratio _N

of I}Ol . The analysis ut111zes a uniform line force input of 10.0 N/mamplitude

located I m away from the boundary to generate incident traveling waves on the

boundary (see figure 2). Once again, the nu_erlcal values chosen to characterize

the boundary and the input forcing function are arbitrary but realistic values.

The large distance between the source and the boundary insures that the boundary

does not experience any near field effects associated wlththe source.

For the case shown in fl_ure 13, the measurement probes are located 10 cm

away from the boundary. Flgure 13(a) indlcates that the near field error for

the FREE FIELD method is acceptable over the ent3re frequency rmnge. The DIRECT

method IS seen to be slightly more accurate than the FREE FIELD method. Also

note that very llttlepower flows through the boundary in the vicinityof 850 Hz.

Thus. the *mpedancemlsmatcb phenomenon occurs at a much hlgher frequency in this

case It can be shown that the locatleno; the impedencemlsmatch is dependent

primarily on the value of the rotatlonal inertla of the boundary_n,# _

Figure 14 shows the results obtained when the measurement probes are located

5 cm from the boundary Flgure 14(a) Indlcates that the magnitude of the errol
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in the zntensity estimates produced by the FREE FIELD method greatly increases

at frequencies above 500Hz. ThoestimatesproducedbytheDIRECTmeth°dremain

very accurate, however. Figure 14(b) is plot of the absolute values of tbein-

tensity estimates for the two methods. Mote that the FREE FIELD method produces

negative intensity values in the vicinity of 800 Ez indicating that the poser is

flowing out of rather then throughtheboundaryinthisrange- Therefore, the ac-

curacy of the FREE FIELD method cannot tlecoss_rily be guaranteed in the higher

frequency ranges, but may depend _n the location of the transducers and the char-

acteristics of the boundary

MEASUREMENTS NEAR A LINE BOUNDARY WITH

TRANSLATIONAL AND ROTATIONAL PROPERTIES

Figures 15 and 16 show typical results obtained (usin_ the analysis o_ Ap-

pendix III) _or the gimutations of measurements in a plate near to a line bound-

ary which possesses both the translational and rotational stiffness_nd inertia

properties discussed In the two previous subsections

( 4.,I III _ I()7 N/m/m, ,,J,, i.(}kg/m. _,_ (lJ)l ,

_'0 I.() ' ]{)l N m/m, ii1,_ 0.1)111 k_-m2/m, and _i ,(]1 ) .

The analysis ut111zes a uniform line force input of i0,0 N/mamplitude located I m

away from the boundary tc generate incident travolingwaves on thebot_ndary (see

fzgure 2)

Figure 15 shows the results obtalnedwhsn the measurement probes are located

I0 cm away from the boundary These results best a strong resemblance to those

obtained in fl_ure 11 Flgure i5(a) indicates that the near field error for the

FREE FIELD method is less than I dB everywhere except in the frequency range of

maxlmum power f low. The DIRECT method is seen to be accurate over the entire

frequency range Flgure 15(b) suggeststhat the addedrotationalproperties°f
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the boundary cause a secondary impedance mlsmatch at some frequency above 1000

Hz.

Figure 16 shows the results obtained when the measurement probes are located

S cmfromtheboundary. The error curve of figure 16(a) indicates that the inten-

sity estimates produced by the FREE FIELD method are inaccurate over the entire 0-

1000Hz fraquencyrange. The estimates produced by the DIRECT method remainac-

curate, however. Figure 16(b) shows that the intensity estimate_producedby the

FREE FIELD method have the wrong sign near the first impedance mismatch (_00-300

Hz) and deteriorate rapidly as they approach the second impedance mismatch (above

1000 Hz). Thus, it may be concluded that the magnltudeand character of theater

field error produced by the FREE FIELD method may depend on the particular combi-

nation of the trans[atlonal androtatlonalproperties of a boundary in the vicln-

ity of the measurement probe

MEASUREMENTS UNDER SEVERE,

COMBINED NEAR FIELD CONDITIONS

FiKures 17 shows typlcal results obtained (using the analyeis of Appendix

Ill) for the simulations of measurements ins plate with themsasuremeat probes

"eandwiched"betwee*ta llne force and e lineboundary. The boundary in this case

possesses the properties dlscussedprevlously

(_'; [ I) • 11)7 N/m/m, I,_., [ q} k_/m, _} lLOl ,

_., I q). ll)I N-m/m, ,_i,i 1).I)Ill kg-mZ/m, and (,_ .OJ )

and is located 5 (:m from the measurement probes, kllne force input of uniform

I0.0 N/mma_n:tude ]s posltloned I0 cm from the boundary Thus. the distance

between the input and the _eometrlc center of the transducers is also 5 cm.

Under these condltlons, the transducers are affected by the pzopagating

and evanescent components of both the input and the boundary. Furthermore,

both the propagatlngand evanescent components of the reflections from the

23
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boundary are altered by the presence of the near field component of the input.

This modified response of the boundary is included in the analysis as outlined

by Appendix III. It is assumed, however, that the flow field produced by the line

force input is not altered by the presence of the boundary. (In practice, this

would not be the case since the impedance"seen"by the input would change due to

the close proximity of the boundary.) This simplificationcanbe thought of as

an alteration of the forcing function such that the characteristics of the flow

field associated with the input remain the same.

Figure 17 shows that intensity estimates of the FREE FIELD method are nega-

tive (andthereforeunusable) below 400 Hz. Interestingly, the accuracy of the

FREE FIleD method actually improves in the 400-900 Hz range (compared to figure

16) due to the close proximity of the source. Above 900 Hz, the FREE FIELD es-

timates rapidly deKenerate as they approach the secondary impedance mismatch.

In contrast, the DIRECT method is seen to be accurate over the entire frequency

range Thus, It may be concluded that the ma_nitudeand character of th_near

field error associated with the FREE FIELD measurement method may also depend on

the combined characteristics of the sources and boundarles In the vicinity of the

measurement probe

C()NCLUDING REMARKS

Overall, the results of the study indicatet_t the near field error asso-

clated wlth the FREE FIgLD (two accelerometer) measurement method is much more

serlous than prevlously believed.

Simulatlons of FREE FIELD measurements near to simple sources show that

the error curve of this method does not necessarlly "ho_er" about the axis of

0 error as implled by the more llmlted res,llts presented in references 4, 5,

and6 Furthermore, it was shown that the frequency range of maximum error

often coincides wlth the frequency range of maximum power flow whenmeasuring
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n, ar simple sources. It was shown that both the _lgnand the magnitude of the

near field error associated with the FREE FIELD _ethod is very sensitive to the

distance between the measurement probe andthe source. And it was shown that the

accuracy of the FREE FIELD method is highly dependent on the radial and azimuthal

location of the mea_:urement probe (with respect to the source) when measuring

near hicher order sources (dipoles and quadrupoles).

Simulations of FPEE FIELD measurements near to simple boundaries show that

this method ca_actually indicate that the intensity is flowing in the wrong

direction. Furthermore, it was shown that this ty_e of error is not necessarily

restricted to the lower frequency ranges and can occur in frequency ranges where

the power flow is relatively large and s_able.

The results of the simulations for the DIRECT method are in sharp contrast to

the results ob_alned for the FREE FIELD me_hod. In essentially all caseS thndsr

investigation (all simple sources and boundaries studied) the direct finite

difference approach produced an accurate estimate of the intensity flowing in the

plate. The estlmatesproducedby this method were so accurate, in fact,that no

significant difference was found between the estimutes and the exact solution for

any near field measurement condltion studied.

In fairness to the FREE FIELD approach it should be noted that many of the

serious near fle]d errors inherent in the method can be suppressed for a given

measurement condltlonby increasing the spaclngbetweenthe two accelerometers.

Uslng thls technique: the near fleld effects can be"shifted"to the very low

frequency ranges (beyond the range of interest). This solutlon is nor apanacea,

however, since it w111 _I_o cause the error assoclatedwiththe finite diff" ence

approximations to greatly increase in sl_niflcance

[% should also be noted that the FREE FIELD approach may be quite useful for

obtaln_ng estimates of the power flow in sltUatlons where there are no sources
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nearby, or in situations .here the properties of the structure do not change in

the vicinity of the measurement probe,

Lastly, it should be pointed out that both methods are subject to other types

of measuremnt error. Quinlin4and Recb_Ln-White_ have shown that the FREE FIELD

method has dlffxculty prL,ducinganaccuret e estimate of the structural intensity

in reverberant flow fields. Furthermore. Mickol's results 6 suggest that the

presence of the mea_:rement probe itself can significantly alter the flo. field

and thereforede_rade the accuracy of themeasu_ements, It is expected that the

DIRECT method suffers from similar adverse effects.
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A[_PENDrX I

EQUATIONS FOR THE TRANSVERSE VIBRATION OF AN INFINITE BEAM

Genera] Solution for a Discrete Forcing Ptunction

The governing differential equation for the transverse vibration of an

infinite beam is given by (see r_ference 7)

./_F'U/ _ m '_z'l
/)/., /,(.,.t) (.-|.1

if it assumed that the forcing functlon is slmpleharmonic in character _und

occurs at adiscrete location in space, l.e.

then the resultlngmotlonof the beam,s also slmple harmonic and the governing

equatlon becomes

HI_J I'

J\'_ U "" I_ i .,I.:l _

Now for the case of all Infzn!ts beam

and deflnlng l

VI (:i.li
,it.l '

,,,_: I_'.the governzn_ equatlon becomes

For value_ of , .._I
, the _overnlng equatl_n IS

I _ : _! . l,:b! I}
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This linear ordinary homogeneous differential equation is easily solved using

operator methods and the solution is given by

for values of .r / f). Furthermore, from physical considerations, the value of ,i

must remaln finite as r approaches infinity. Therefore, ('4 0 and since all

waves propaKats sway from the source, ('_ 0 for values of ._. _ O. Thus, the

solutionbacomes

i_-%.

for values of .r -()

'l(.r, l) _¢'1, '_: _ _'_, _,l,J-_' (-I._)

Solutlon for a Point Force Input

For the case of a dlscretepoint force of eunplitude _i,,incited at,r 0 on an

Inflnits beam, the followlng two boundary conditions apply:

h/

(,' II) I), i ..I._1)

(?l , Ill /_ i Jl)
,_, I ., I ..I.III)

Applylng th_ boundary condltlon of equatlon (A 9) to the solutlongiven b,'

Aquatlon (A 8) , it can be shown that

Th,_r the solut 10:i reduces to

/_ T _..I.I I I

tll i .! I _' (..I.lZ_



Applying the boundary condition of equation (A. I0) to the solution given by

(A, 12), it is found that

2I,), _ -I.1:_1
l'l (t llb-_) •

- IIas a functionof timeand the solution for the transverse displacement for .7'

is given by

,,q.r,l) tt }]' "*' l' _'_'l_J". (A,11_

Differentiating with respect to time to obtalnthe transverse velocity for

• _,

,,,!.,'.Ii

The angular veloclty for

.ith respect to thus

._f'), , .'__ j. _;,'-' {A.IM
I ll]l,_!

- {) is found by differentiating equation (A.15)

,_, _ IHL':I

The moment in the beam for .." l)as a function of time can be obtained by

dlfferentiatingequatlon (A 14) twice wlth respect to., The result is

'12'_ //'/' . a ' , I.'tIT)
,t_- i l/el

The shear in the beam f_r' II can s!milarly be obtained from the third order

dlfferent*atlonof (A 14) wlth re3p_ct to , as follows:

ru ,,'_ 1? _l'' /'"' 't, • , _' , '.' I 1.14_
= _r I I



Solution for a Point Moment Input

For the case of adiscretepointmoment of amplitudeMp located at x - flon

an infinite beam, the following two boundary conditions apply:

,t{J' 0) -0, (A.m)

_lls(r 0) /_ _,r_(x 0) _ ,,_1,,/2. (A 211)

Applyin 8 the boundary condition of equat ion (A. 19) to the solution given by

equation (A.8). it can be shown that

('+ ('L " ( :|'_1 )

Thus the solution reduces to

Applying the boundary condition of equation (A.20) to the solution _iven by

(A.22). it ls found that

'_le (42:1)
('l I 1H4'" ) '

l) as a f_nction of time
and the solutlon for the transverse dlsplacement for ,,'

Is _iven by

ti('_'tt ( I/I _'-' )

Differenttatxngwzth respect to tlme to obtain the transverse velocity for

[I,
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,i(.,+,+) _ 2+'M,
(,iRks) I _" "-__l_2_'t" (.,I.2_)

Theemguler velocity fort .> Ois fou_dbydifferentiat)ngequation (1,25)

with respect to r, Thus

,'t# ]_,MI '

,'t.7. (.lllk) ' J' J/'' _ ' l_'h-l"t. (A.2(;)

The moment in the bee_m for ,," , 0 as a funct ion of time can be obtained by

differentiating equat ion (A. 24) tl_ice with respect to .r The result is

M,,,(.r,/) t] ;12q .lip ; I, Js_ + _ /,.tj,.,..t.
O.r 2 1 (.,1.2_)

The shear in the beam for .r '0 can sire1larly be obtained from the third order

differentiationof (A 24) with respect to r as follovs

,_b I k. ll I
QI.r.t) 13 t 1 I I' ,x,. i _ _,_J_,'t. {:1.2,_}

31



APPENDIX II

EQU&TIONS FOR THE TRANSVERSE VIBRATION OF AN INFINITE PLATE

Governing Differential Equation for a P>in_ Force

The governing differential equation for the trensverse vibration elan

infinite plate is given by (see reference 7)

[]V b/ _ ,, ,i_t2 /,,',_,t).

If it assumed that the forcing fu_ct ion is a simple harmonic force which

occurs perpendicular to _a plate ar a discre_apoint in space, i .e.

l,t_'.o, tl 1',_(,'_ ,_' , tA.30_

then the resulting motion of the plate is also simple harmonic and the governing

equation becomes

DefiningL 't

_V 4 i_ _'t it3("_ 'J_'. (A.31 }

,,_2 H, thzs becomes

For v_lues of _"

IV' A'tb/ H,H, ),'"'

u , the governing equat ton Xs

!l TM L''_, t tl. (A.;12)

Since a point force producesa symmetric response inthe variablev, there canbe

no ,,, dependence in the response _] Therefore, the Laplaclan operator in this case

reduces to
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V2 _-]z ! b
,')r2 f r_ih"

and the biharmonic operator is given by

( .4 .:,_,1)

,.4 V4 V_Vz.

Substituting this last result, the governing equation becomes

(V_ k_)(V _ _ A._),/ f).

Solution for a Point Force

Equation (A.36) is a linear ordinary homogeneous differential equation.

Using operator methods, thxs equation is easily solved. The solution is given by

where ,j must satisfy

'/ '} " '/'i'J_", (A.;_7_

and where,l, must satisfy

I,j,, , ,'_r _'_')'/ ()' (43_)

r_2 [ ,t

,'_r: r ,_r }r/ ' O. I .I.?_H

for values of : II

Equations (A 38) and (A 39) are alternate forms of theordlnaryandmodified

Bessel's equation of Oth order, respectlvely The solutions to these two equa-

tlons are well known and are _iven, respectlvely, by

'l r'llf,Jl_/,._ , I :ll. _,1, {,4.,10)
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,/' _'_flo_'( j_.,.)._ ('4Ho_2)(-//,,.), (A.41_

where II_/I( • ) is the Oth order Sankel function of the Ist kind and//0(2)(-) is the Oth

order Hankel function of the 2nd kind.

It cain be shown (see reference 7) that H0ql}(kr) corresponds to an inward trav-

elling wave _nd that H0(_)(-3kr) corresponds to a solution that _rows exponen-

tially without bound in kr. Therefore, from physical considerations, the coef-

ficients of thesetwo terms must be zero. Thns, the solution becomes

,;(r,t} : ('_Hl2'_o ,k,') + C,H_}(-jk,')[eJ _t,

where H_(_2_(kr) corresponds to an outward travelling wave andH_2_(

sponds to anexponently decaying solution in kr.

Applying the boundary condition

i_'l O, {A.,13 )
IIn_l, .O)ih"

(from symmetry considerations) to the solution given by (A.42), it is found that

f'8 (',. Thus, the solution is reduced to

,r!,.t)(':[ll_/Plk,')II_( )k,)!,:'t. {A.4.1)

Now from reference 7, the equation for the shear in the plate is given by the

equatlon

C,) H ;h- _ V :,II. ( A .,V, )

Applylng the boundary condition

/l'"I, .._(_
(2_,')'
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it is shown in reference 7 that the value of ('2 is given by

Thus, the final solution for the displacement of the point driven infinite plate

is given by

(8Bk 2) --o _

Equations for transverse velocity, angular velocity, bending moment,and

shear can be obtained, respectively, by straightforward differentiation of

equation (A.48) using the following formulae:

Dq
q ;Jr )_'q' (A.4_P)

0:, : /} 011 ibl (A.50)
,'_t i_r :: )u"ho(t,r) '

DZq I D,I)I, /A.51 )
M_, Hi ,,."_"2 ¢ tl( v ,')r

,'_ i_ i*2q 1 01}
Q B3,.(_'2q) Illb.(i;iv _ + ,.i)1. ). (/I.32)

Carrying out the operations indicated in equations (A,49) through (A.52), the

equations for transverse velocity, angular velocity, bending moment,and shear

for the case of an infinite plate driven by a point force are glven, respectively.

by:

t';,
'l 1t1_,2'(1,', ') II o ( )k,')], :_'t, (A.5:0

(,_f11,.:)

.% *bl![tlti-',[t.,. _ t'-_
(RIIL') )Ill ( jL.v),t_'t, ( .,I.rvl )

]H('21
)t'"r,,{-" .... li],2b_ )a.,.) (i I'),Hl,"l(k,.) , jttt ( jk,.)i ,J_'. (A.5"_)

O .ikl.),{ ii_,.,,(k,) +2)+ Jtl I ( )L'r)it_ '_'t (A.Sfi)
,r
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Solution for a Point Moment

P

L

The solution for an infinite plate driven by a simple harmonac point moment

can be obtained d_rectly from the solution for a point force by simple differen-

tiationwithrespect to thecartesiancoordinater (see reference 7). Thus. the

solution for the transverse displacement due to a point moment is given by

He ( jk,.)le2_'t ' (A..57}
_! /).r (_ Hk _ )

and from the calculus it is kno.n that

('0._0

i_,r [h' r "_0

Since the monopole solution contains no _ dependence, the dipole (point moment)

solutlon is given by

,I IxlU,') '

Performing the indicated operation, the result is

jM,, ,,,_O[tll2t(k,) _ jl/l:_( ]kr):,:='_. (A.5_)
'i {_JlL.)

Note that th_s solutxon for the transverse displacement of the plate depends on

both the radlal distance r, and the azimuthal angle ©. Therefore, the power flow

field due to e poxnt moment input is not radially symmetrxc, and the flow field

contalns a component due to twlst in additlon to the ordinary ehear andbending

components

Equations for transverse velocity, angular veloclty, rate of twlst, bending

moment, shear, and twisting moment can be obtained, respectively, by straight-

forward dlfferentlatlon of equation (A58) usln_ the followln_ formulae:
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Oq
# iU = J_:q' (Am)

b_ := 0 a,_ . 0

= :It r ('_¢ : (kr) t9¢ _1" (A.fil)

hl_, = B[e92_#l k Bp[ I 0 v 1 (9271 (A.62)
--t_r2 J r(Or + r2C_¢ 21'

q B_r(V',,)= 0 #',, 10,, 1_. (A.6:,)

_llt BII p)[l r 3_1 1 r%1;)rO(a rz Odp ] ' (A.64)

Carrying out the operation_ indicated in equations (A.59) through (A.64), the

equations for transverse velocity, angular velocity, rate of twist, bending

moment, shear, and t.isting moment for the case of an infinite plata driven by a

point moment are given, respectively, by:

,)

w )lII, eo._ ,_, I_. t ,
(_I_)

_/Ill' "('_' - jk,-)], .'-". A,65)
(_B-ktc,'.'c'[lll,'l(k,') _.rul _ (

[HoC_,)(kr) . .,(*.), I _'1
no !-jk,') (k,.)(tll" (kr)-k jH{121( jkrD], (A.66)

lilt, J_l!11, c,,:%5 [! (-H _ I H_o2)(kr) 4 2tq I_._, IL.t (k,.i_u_]_lt''_l

. (-'t 3 ll_Z)( ]l:,-). 1 H(121( jk,')]
1i lit ( fl"") _ (I,.r) (t.,.) 2

, /' ll_)(k,.) _ IIq,"l( .il,.,.)l]_=" ,(t._.) "

( A.68

)I"" M'""_""' "%1

M,

, I :t k,'l )L'r)_
+/I() ( (t.r)ii<+lit,), t.,.lltl _:I J t1_1_

lk'llv ,.,4_( P)' (_" t _")
" {I,',) tlt_ '" _" //: t Jk")i''"_"
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Solution for a Lateral Quadrupole

The solution for an infinite plate driven by a simple harmonic point lateral

quadrapole can be obtained directly from the solu%ion for a point moment by simple

difxerentiation with respect to the cartesian coordinate 9 Thus, the solution

fol the transcsrse displacement due to a lateral quadrapole is given b>

q /?y(aBk) v't I _ Jnl
(A.71)

and from the calculus it is known that

,'I /1 ('osO /;

,'_!/ r r 30

Thus, the quadrapo!e solution is given by

r /_, (,)) ..(?)
J(L, , _,,. [,',,.o., ,,e ,_ :tt( (;,,,.) _ 2,,, { J;,'_))

(gtl_ ) .:

i 2) ,,12_, - (.o,q,p _'_ ]
Ik,') ,',,.qe .+ tt I (_") + JH I I r ,'_0 J

,,1.72_

Carrylngout the indicated operations and simplifying, the result is

)Q" ,,,.,._,.,:, lt(.2_(L', J _ 11(2_')( .,/,,')l. /-.".
'f (_11)

(,.I.7:_)
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Equations for transverse velocity, angular velocity, rats of twist, bend:ng

moment, shear, and twisting moment ¢an bo obtained, respectively, by strai_ht-

forsard differentiation of equation (A.73) using the formulae given by equations

(A.59) throu6h (A.64). Performing th3 operations andicatsdin thss_ formulaeon

squation (A.73), the results are _ivsn by

i _ B ), ,,.,c/,.,,,4,,.j,_ % ' .

O, _._.q,, .,.,2¢,1u_)(_.,.1_ H_,_I Jk,)k_".
laB) I/,',' ) " (A.76)

.1/_, J _ - Qv
;._ ,',,.,,,_,,,no,'-".[[ U 2),{, U_)(:'+ jk,,)l

1 2 (i

(x.,.)lu, /,., ;n',-')( ._._.,.)r_ ii.,:)_[#_2)(._.,.)+ _,[_z){.)_-)I
H (2) (2) it(;

(_,,.) IH, !4'") )u.! A,)! - _H__)(_'")_ #_,_){ j_.')]],fk,)z -

(A.77)

1I,

q -ll"IQ ' ( ,_
" .c _n,,_,J_' [fll(2) '" Jll_ ( ikr)I

2 (2)

'(i.;) H: (_.,.) _ u_:'( _.,.))],

.)

,jL-(), , [ kl,. )"4 , . 111(12)(L.,.) (2)
( )III ( j,{'r)l

(A.7_)

(,4.7!))
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APPENDIX IlI

EQUATIONS FOR THE TRANSVERSE VIBRATION

OF BEAMS NEAR TO SIMPLE BOUNDARIES

Introduction

This appendix is largely a recapitulation of the theory developed by B, R.

Mace _nreferenceS, For more detailed explanations of the concepts presented

here see reference 8

AS shown In Appendlx I, the solution for the transverse displacement in a

beam due t_ a s_mplebarmonic disturbe_nceis given by equation (A.7) (repeated

here for the conv6nience of the reader)

where thewavenumber k is given by 4'4 I._'_-/H. It should be noted that the

coefflclents In equation (A.7) may have complex values. Als,- note that (_i and('_

correspond to the propagatlng and decaying portlons of a right traveling wave,

_espectively. Slmllarly, ( : and(" lcorrespond to the propagating and decaying

port lens of a left travelin_wave, respectlvely.

Now deflne the followlngvectors

I )
(

and also def lne the following matrlces

f" i

\

) ( :I x|) )
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Ill [ .4 ._ I I

Utilizing equations (A.80) and (A.81), a vector describing the magnitude of the

transverse displacsment of the be_unntany location x can be expressed as

and at the position_r 0 thisvector Zs glvenby

++t,,, + [II,_ ), <A.s:_)tllO, t I ' , ++

where lip is the identity matrix.

Utilizing squat ion (A 82) , define the following vec _ors :

'"++.+} i/i*;'; ,," <.,') ill ',; {A,S41

Using equatlon (A 84) it can be shown that the amplitudes of the displacement,

slope, bendin_ moment, and shear of the beam at any location x can be computed

usxng the following matrix equation (see reference 8):
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Wave Reflection at Point Discontinuities

Now aesum_ that the location,r 0 coincides with the location of a poin_

discontinuity (boundary) which is characterized by the followin6dimen.ionlese

translational and rotational stiffness parameters, respectively:

I;',, ( _""'"l '< 3_"2_,,Ib,l"%)l"_ " k,,)lt EI;,'_),

It,; f __2/;tt_ + j_]2_AIA'01,;O)I/ i _"O)' I{'[]_'),

.|.86)

A.871

Further suppc_se that a set of right traveling eaves represented by,," is

incident on thisboundaryandtlves rise tea set of reflected (left traveling)

_aves represented by,," given by the equation

'I _ I rl

whore ',i is the zefloctlonmatrlx.
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It is shown _n reference 8 that the reflectionmatrix [r I, for aboundary

characterized by equat ions (l. 86) and (A. 87) , is given by the equation

|

(;**)' 4 C0 ,
it] (' ! l

_here

K,t ( A.90
71 =: - w

and

IG ( A .O 1 )

Substituting equation (A.89) into equation (A.84),the vectors for the

right traveling and left travelin_ components o_ the transverse displacement at

any location on the incident side of the beara(r O) are given by

,,..(,.) !f:,_.;,i l.,, i/i 'i"! 'i'.
( ,,|.!_'21

The vector equations given by (A.92) can nov be substituted into the vector equa-

tlonof (A,85) Thus, equatlov (A 85) can be used to calculate the transverse

43



displacement, the slope, the bending moment, and the shear of the beam at any lo-

cation on the incident side of thebeam(_r. Ol ' Thetransverseandangulaxveloc

tries of the be_u_canthen be obtained from the transverse displacement and slops

of the beam, respectively, by di£ferentiationwith respect to time.
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TABLE I.- MATERIAL PROPERTIES OF THE PLATE

Materiali

AA2024

YO_g ' S
modulus

N/m _

i

Polsson's

ratio

0.330 0.3175

I

Density

kg/m _

0.2794
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Recent advances in electronics technology along with the advent of low cost muhi-channel Fast
F.uricr analyzers have now made it practical to use higher order central difference formulae to measure
power llow in one dimension',d and two dimensional structures. The method discussed in this paper
uses five point differencing for the spatial derivatives in one dimensional and a thirteen point difference
pattern For the spatial derivatives in two dimensional plates and shells. It is assumed that the measuring
tr;irl_duccrs are aecclcrometers.

An anulytical study of the higher order differencing method and the conventional two
uccelcrmueter mcthnd was performed here as a preliminary to the application of these methods to actual
aircraft stmct.res. Some classical problems were analyzed in order to simulate and compare the
pcrf.mmnce of the tv.o methods under near field measurement conditions. Near field conditions
.nalyrcd in this study include examples of power flows near simple sources and simple boundane<
The estimates pn_duccd by the two methtrds were compared to the exact solution in each example. This
p:,pcr pre_ents the the¢_ry and selected results of the study. The results indicate that the bias errors of the
two accclcrometcr mcth.d under near field measurement conditions may be much larger than previous
_qtldiCs have suggested.
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